RONAALP Algorithm¶
Description of the RONAALP module to create a reduced-order model of a high dimensional nonlinear functions with active learning procedure.
Mathematically, a RONAALP reduced-order model \(g\) predicts the outputs of the function of interest \(f\) such that \(\lVert g({\mathbf{z}}) - f(\mathbf{z}) \rVert_2\) is minimized and the computational cost is significantly reduced compared to the original function. The strategy employed to derive the reduced-order model is presented in [1], [2].
- 1
Scherding, C., Rigas, G., Sipp, D., Schmid, P. J., & Sayadi, T. (2023). Data-driven framework for input/output lookup tables reduction: Application to hypersonic flows in chemical nonequilibrium. Physical Review Fluids, 8(2), 023201.
- 2
Scherding, C. (2023). Predictive modeling of hypersonic flows in thermochemical nonequilibrium: physics-based and data-driven approaches. PhD Thesis, Sorbone University.
-
RONAALP.
Ronaalp
(d=2, feat_min=0, feat_max=1, method='Spline', n_rbf=200, n_ghost=1000, n_tree=20, rbf_degree=3, rbf_smoothing=0.001, n_epochs=300, architecture=[12, 6], clustering=True)[source]¶ Reduced Order Nonlinear Approximation with Active Learning Procedure.
- Parameters
- dint, default = 2
Dimension of the latent space.
- feat_minfloat, default = 0
Minimum value for MinMaxScaling.
- feat_maxfloat, default = 1
Maximum value for MinMaxScaling.
- n_treeint, default = 20
Number of trees in RandomForest classifier.
- n_ghostint, default = 1000
Number of neighboring point to add to build the ghost layer of each cluster
- n_rbfint, default = 200
Number of kernels in each clusters.
- methodstr, optional
Kernel function to be used for RBF. Should be: - ‘Exponential’ : exponential kernel exp(-r^2/l) - ‘Spline’ : thin-plate spline kernel r^2*log(r)
- rbf_degreeint, default = 3
Highest degree of added polynomial terms for RBF. Only used when method=’Spline’
- rbf_smoothingfloat, default = 1e-3
Smoothing parameter for RBF.
- architecturelist, default = [12,6]
A list specifying the number of neurons in each hidden layer for the encoding and decoding parts.
- clusteringboolean, default = True
Specify if the user wants to perform Newman clustering in the latent space.
References
- 1
Scherding, C., Rigas, G., Sipp, D., Schmid, P. J., & Sayadi, T. (2023). Data-driven framework for input/output lookup tables reduction: Application to hypersonic flows in chemical nonequilibrium. Physical Review Fluids, 8(2), 023201.
- 2
Scherding, C. (2023). Predictive modeling of hypersonic flows in thermochemical nonequilibrium: physics-based and data-driven approaches. PhD Thesis, Sorbone University.
- Attributes
- scaler_xMinMaxScaler object
Scaler for input data.
- scaler_yMinMaxScaler object
Scaler for latent space.
- scaler_zMinMaxScaler object
Scaler for output data.
- encoder: Keras neural network.
Deep encoder to project high-dimensional input data in low-dimensional latent space.
- n_clusters: int
Number of clusters found by Newman algorithm in the latent space.
- classifier: Scikit-learn random forest classifier
Classifier trained on Newman clusters.
- kmeans_list: list of length n_clusters
List containing the kmeans objects of each cluster.
- surrogate_list: list of length n_clusters
List containing the RBF surrogate models of each cluster.